Undervisningen i ämnet matematik – fortsättning på nivå 1c ska behandla följande centrala innehåll:
Aritmetik, algebra och funktioner
- Begreppet absolutbelopp.
- Begreppet rationella uttryck. Hantering av rationella uttryck.
- Begreppet gränsvärde. Begreppen sekant, tangent, förändringshastighet, ändringskvot och derivata för en funktion. Grafiska och digitala metoder för att derivera funktioner. Villkor för deriverbarhet.
- Motivering och hantering av deriveringsregler för potens- och exponentialfunktioner samt summor av dessa. Begreppen talet e och naturlig logaritm.
- Begreppet andraderivata. Metoder för att lösa extremvärdesproblem.
- Begreppet polynom och egenskaper hos polynomfunktioner. Metoder för att lösa enklare polynomekvationer.
- Begreppen bestämd integral och primitiv funktion och sambandet mellan dessa.
- Grafiska och digitala metoder för att bestämma integraler.
- Motivering och hantering av metoder för att bestämma integraler för potens- och exponentialfunktioner samt summor av dessa.
- Formulering och beräkning av integraler i enkla situationer.
Trigonometri
- Begreppet enhetscirkeln. Definition av trigonometriska begrepp utifrån enhetscirkeln.
- Bevis och användning av cosinus-, sinus- och areasatsen.
Digitala verktyg
- Användning av digitala verktyg, även symbolhanterande, för att effektivisera beräkningar och komplettera metoder, till exempel vid ekvationslösning, derivering, integrering, hantering av algebraiska uttryck och problemlösning.
- Användning av programmering som verktyg vid problemlösning, databearbetning eller tillämpning av numeriska metoder.
Problemlösning och tillämpningsområden
- Problemlösning med särskild utgångspunkt i utbildningens karaktär och samhällsliv, däribland frågeställningar som berör hållbar utveckling och hur matematik kan användas för kritisk granskning av fakta och påståenden.
- Tillämpning och formulering av matematiska modeller i realistiska situationer. Utvärdering av matematiska modellers egenskaper och begränsningar.
- Orientering om något ur matematikens historia, till exempel hur ett matematiskt begrepp utvecklats, matematikens roll i något historiskt skeende, en betydande person inom matematiken eller ett historiskt matematiskt problem.